

COMPSCI 389 Introduction to Machine Learning

Introduction to Supervised Learning

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Data & Supervised Learning

- Different subfields of ML assume access to different kinds of data.
- During the first part of the course, we will focus on supervised learning problems.
- These are problems where the data is a set of points, and so it is called a data set or dataset.
 - Data set ≠ Database
- Each point consists of a pair of inputs and outputs.
- Given a data set of such input-output pairs, a supervised learning algorithm learns to predict the output given the input, even for points not in the data set.

Data Set Notation

- X: Input (also called features, attributes, covariates, or predictors)
 - Typically, X is a vector, array, or list of numbers or strings.
- Y: Output (also called labels or targets)
 - Typically, Y is a single number or string.
- An input-output pair is (X, Y).

- **Note**: We will *frequently* flip between terms for *X* and *Y*.
 - Different sources use different terms, and it's important to be comfortable with all of them.

Example Input-Output Pairs

- Predict university student GPAs from entrance exam scores.
 - Features = scores on 9 entrance exams.
 - Labels = GPA
 - Example input-output pair:

((622.6, 491.56, 439.93, 707.64, 663.65, 557.09, 711.37, 731.31, 509.8), 1.333333)

9 exam scores

V

Example Input-Output Pairs

- Predict whether a sentence is a lie.
 - Input: A statement made by a person.
 - Output: A label indicating whether the sentence was truthful or a lie.
 - Example input-output pair:

```
("I am not a crook.", "lie")

Statement Truth/Lie
```

Data Set Notation (Revisited)

- X: Input (also called features, attributes, covariates, or predictors)
 - Typically, X is a vector, array, or list of numbers or strings.
- Y: Output (also called labels or targets)
 - Typically, Y is a single number or string.
- An input-output pair is (X, Y).
- Let n, called the **data set size** or **size of the data set**, be the number of input-output pairs in the data set.
- Let (X_i, Y_i) denote the i^{th} input output pair.
- The complete data set is

$$(X_i, Y_i)_{i=1}^n = ((X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)).$$

Data Set Notation

$$(X_i, Y_i)_{i=1}^n = ((X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n))$$

- Different sources use different notation.
 - X, X_i, x , or x_i can denote one input vector.
 - *X* can denote all the input vectors:

$$X = (X_i)_{i=1}^n.$$

- Y, Y_i, y , or y_i can represent one label.
- *Y* or *y* can represent all the labels:

$$Y = (Y_i)_{i=1}^n.$$

- Upper and lower case can mean different things:
 - Upper case = matrix (2-dimensional table), lower case = vector.
 - (X, y) denotes a complete data set. (We'll see this later in our code!)
 - Upper case = random variable, lower case = constant.

Review: Countable, Uncountable

- Many (infinite!) different infinities
- The two most common are countable infinity and uncountable infinity.
- Countable Infinity \aleph_0
 - The number of integers.
 - The cardinality (size) of any set that has a one-to-one correspondence with the integers.
- Uncountable Infinity $\geq \aleph_1$
 - The number of real numbers. (\aleph_1)
 - The cardinality (size) of any set that has a one-to-one correspondence with the real numbers.
 - **Note**: Uncountable infinity actually refers to any infinity at least as large as the cardinality of the reals.
- Countable Set (cardinality ≤ ℵ₀)
 - A set with finite or countable cardinality (size).
 - E.g., days of the week or even numbers
- Uncountable Set: Not countable.
- Question: Are there more natural numbers or even natural numbers?

Feature Types

Numerical

- **Continuous**: Features that can take any value in a range, like temperature or velocity. These features have an uncountable set of possible values.
- **Discrete**: Features that take a countable number of distinct values, like the number of cats a person owns. (**Binary** features are a special case.)
- Categorical (discrete, but not numbers)
 - **Nominal**: Unordered categories like colors (red, green, blue) or genre (drama, comedy, science fiction, etc.).
 - **Ordinal**: Categories with a specific order like educational level (high school, bachelor's, master's) or military rank (private, specialist, corporal, etc.)
- Text/String
- Image
- Others?

Feature Types

- Non-numerical features are often converted into numerical features to make them easier to work with.
 - Categorical features map to integers: "Sunday"→0, "Monday"→1,
 "Tuesday"→2, etc.
 - Images can be converted to sequences of (r,g,b) values describing each pixel.
 - Text can be converted to discrete or continuous features
 - Discrete: Each word (or part of a word) maps to a unique integer.
 - Each basic unit of text (word, character, or subword) is called a **token**.
 - **Continuous**: Each word can be mapped to a vector of real numbers. This is called a **word embedding**. Ideally, similar words are mapped to similar vectors of numbers. Word embeddings are themselves learned from data.

Why "Supervised"?

- In **supervised learning**, each data point includes a label *Y* indicating what the ML algorithm should provide as output when presented with input *X*.
 - This label provides supervision for the ML algorithm, telling it what it should do.
- In unsupervised learning, data points do not have labels.
 - The ML algorithm sees inputs but has no supervision telling it what it should or should not do when presented with different inputs.
- In reinforcement learning, the ML algorithm is told how good its outputs were, but not what the correct outputs would have been.

Unsupervised Learning

- Learning word embeddings is one example of unsupervised learning.
- Clustering is another common example of unsupervised learning.
- Clustering algorithms try to identify groups of similar inputs.
- Example: Given images of hand-written letters, we may want to identify the number of different letters in the alphabet and learn to distinguish between them.

Regression and Classification

- Within supervised learning, recall that a data set is a set of inputoutput pairs (X, Y).
- Regression: Y is a continuous number.
 - Multivariate Regression: Y is a vector. That is, $Y \in \mathbb{R}^m$ and m > 1.
- Classification: Y is categorical (mapped to an integer).
 - Binary Classification: $Y \in \{0,1\}$ or $Y \in \{-1,1\}$.
 - Multi-Class Classification: $Y \in \{0,1,...,k\}$.

Regression $(Y \in \mathbb{R})$ or Classification $(Y \in \mathbb{Z})$?

- Predict the location of the nearest pedestrian from an image or video taken from a car.
 - Multivariate regression
- Predict how long a person will live based on their age, gender, address, and other health indicators.
 - Regression or classification
- Predict whether a person will repay a loan.
 - Binary classification
- Predict the rating that a person would give to a movie.
 - Depends on the rating scale.

Data Set Storage

- There is no agreed upon format for storing data sets.
 - Sometimes they are in plaintext, other times they are not.
 - When in plaintext, they are often in CSV (comma separated values) files.
 - In other cases, they use semicolons or other symbols to separate values.
 - Sometimes separate files store headers saying what each feature is, other times this header is included at the start of the file.

```
1 physics_exam,biology_exam,history_exam,second_language_exam,geography_exam,literature_exam,portuguese_essay_exam,math_exam,chemistry_exam,gpa
2 622.6,491.56,439.93,707.64,663.65,557.09,711.37,731.31,509.8,1.33333
```

^{1 | 39,} State-gov, 77516, Bachelors, 13, Never-married, Adm-clerical, Not-in-family, White, Male, 2174, 0, 40, United-States, <=50K 2 50, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 13, United-States, <=50K

Data Set Representation

- There is no agreed upon way of storing data in software.
 - The entire data set could be one large matrix (two-dimensional array).
 - The data set could be stored as an array of points, each having an X component and a Y component.
 - More commonly, the X values can be stored separately from the Y values.
 - The X values can be stored as a matrix.
 - The X values can be stored as an array of arrays (vector of vectors).
 - These structures could be built in structures in your programming language, or structures built for efficient linear algebra operations.
- One common way in python is using the pandas library.